
www.manaraa.com

Research Article
A Two-Tier Energy-Aware Resource Management for
Virtualized Cloud Computing System

Wei Huang,1 Zhen Wang,2 Mianxiong Dong,3 and Zhuzhong Qian2

1School of Computer Engineering, Nanjing Institute of Technology, Nanjing 211167, China
2State Key Lab. for Novel Software Technology, Nanjing University, Nanjing 210023, China
3Department of Information and Electronic Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan

Correspondence should be addressed to Zhuzhong Qian; qzz@nju.edu.cn

Received 22 February 2016; Accepted 1 September 2016

Academic Editor: Tomàs Margalef

Copyright © 2016 Wei Huang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The economic costs caused by electric power take the most significant part in total cost of data center; thus energy conservation is
an important issue in cloud computing system. One well-known technique to reduce the energy consumption is the consolidation
of Virtual Machines (VMs). However, it may lose some performance points on energy saving and the Quality of Service (QoS)
for dynamic workloads. Fortunately, Dynamic Frequency and Voltage Scaling (DVFS) is an efficient technique to save energy
in dynamic environment. In this paper, combined with the DVFS technology, we propose a cooperative two-tier energy-aware
management method including local DVFS control and global VM deployment. The DVFS controller adjusts the frequencies of
homogenous processors in each server at run-time based on the practical energy prediction. On the other hand, Global Scheduler
assigns VMs onto the designate servers based on the cooperation with the local DVFS controller. The final evaluation results
demonstrate the effectiveness of our two-tier method in energy saving.

1. Introduction

Cloud computing provides elastic computing resources on a
pay-as-you-go basis for most conceivable forms of applica-
tions but it also causes huge amounts of electric energy con-
sumption. Almost 0.5% of world’s total power usage is con-
sumed by the servers in data centers [1]. Among them, pro-
cessors (CPUs) account for themost significant part of power
and have the most dynamical power that can be adjusted,
while other components can only be completely or partially
turned off [2]. Owing to these reasons, reducing energy con-
sumption of processors using the dynamic nature of CPUs’
power has become a hot research topic in cloud computing
system.

To service more users for more income, service providers
prefer to share cluster resources among users. In cloud envi-
ronments, the virtualization technique is widely adopted to
allow users to share the physical resources. Making the work-
ing servers for VirtualMachines (VMs) as less as possible and
letting the idle servers be in a low-power mode will improve
the utilization of resources and reduce energy consumption,

which is known as VM consolidation. In each server, by
applying Dynamic Voltage and Frequency Scaling (DVFS),
which enables dynamic adjustment of execution frequency
on demand, more energy can be saved. The dynamic power
consumption of CPU is proportional to the frequency and to
the square of voltage. Scaling down the execution frequency
will reduce the power while it may also reduce the perfor-
mance and increase the execution time, which may instead
cause more energy consumption (energy is equal to the line
integral of power𝑃 to time 𝑡,𝐸 = ∫𝑡

0
𝑃𝑑𝑡). On the other hand,

real-time tasks in the cloud computing system usually have
requirements on execution speed; the extension of execution
time may violate QoS requirements. Thus, it is nontrivial
to reduce energy consumption by scaling the execution
frequencies of tasks [3].

VM consideration could improve the resource indeed
and many previous works [4–6] achieve significant result on
energy saving in virtualized cloud system. However, most of
them do not take the advantage of DVFS strategy. Some oth-
ers only apply theDVFS after allocationwhile not considering

Hindawi Publishing Corporation
Scientific Programming
Volume 2016, Article ID 4386362, 15 pages
http://dx.doi.org/10.1155/2016/4386362

www.manaraa.com

2 Scientific Programming

the influence of DVFS before allocation. However, if taking
impacts of DVFS technique on energy into consideration
before allocation, muchmore energy can be reduced. But it is
not trivial to minimize the total energy consumption by VM
allocation algorithm and DVFS strategies in this way. Several
problems need to be solved: (1) how to define Quality of Ser-
vice (QoS) requirements; (2) which servers can load arrival
VMs with requirements; (3) which server brings minimum
energy consumption by DVFS for arrival VMs and ensures
QoS requirements.

In this paper, we propose a cooperative two-tier energy-
aware management by taking the DVFS into consideration,
which offload real-time tasks to VMs on clusters and scaling
frequencies. On the local tier, we propose a novel way to find
the best combinations of frequencies of different CPUs that
consume the least energy based on the practical energy pre-
diction. We take both the frequency-power and utilization-
power relationship into consideration when forecasting
energy consumption. On the global tier, by cooperating with
local DVFS controller, the Global Scheduler assigns a VM
to its favourite processor in a cluster that brings minimum
energy change.The frequency to execute the arrival workload
has been decided before allocation instead of after alloca-
tion. The framework proposed in this paper takes both the
energy consumption and performance into consideration
and achieves good tradeoff between energy and consump-
tion.The status of each hosts is controlled by the globalmaster
by regular communication, so the master can control the
energy consumption and performance. Meanwhile, the com-
puting can be done in parallel in each candidate for allocation
to improve the effectiveness of computation. In summary, the
main contributions of this paper are as follows:

(i) We propose the multiprocessor power model, which
is shown to be close to the real power consumption
of a server according to the evaluation of the model.
Themultiprocessor powermodel helps us to precisely
estimate the energy consumption.

(ii) We transform the energy minimization problem of
frequency scaling to a node searching problem in
directed graphs. We also prove that the optimal state
which consumes the least energy can be found from
an initial state in which all processors’ frequencies are
maximum.

(iii) We provide a novel scheduling algorithm, which can
work in parallel and efficiently cooperates with local
DVFS controller, for the problem of energy-aware
scheduling. The experiments justify the effectiveness
of our strategy on energy saving.

The rest of this paper is organized as follows. Section 2
introduces some related works. Section 3 introduces the
framework of our solution and Section 4 introduces the task
model and the analysis of the request of a VM. In Section 5,
we introduce the energy prediction method and energy min-
imizing algorithm of local DVFS controller. The global VM
allocation algorithm is presented in Section 6. In Section 7,we
evaluate our solution through some experiments. Finally, we
conclude this paper in Section 8.

2. Related Work

Reducing energy consumption has already been a critical
issue of data center in recent years. Many works study the
energy saving strategies in virtualized environment. Kusic et
al. [7] defined a dynamic resource management as a sequen-
tial optimization in virtualized environment. The sequential
optimization whose objective is maximizing the profit of
provider is solved using Limited Lookahead Control (LLC)
by minimizing both energy cost and SLA. But the framework
captures the behavior of each application by simulation-based
learning and the complexity of themodelmakes the approach
not suitable for large scale data center.

In [8], the authors have developed dynamic resource
provisioning and allocation problem with virtualized tech-
nique for energy-efficient cloud computing. They propose
self-manage and energy-aware mechanisms to allocate the
Virtual Machines (VMs) andmigrate VMs according to CPU
utilizations and energy consumption. The placing problem
of allocation which can be seen as a bin packing problem
is solved by Modification Best Fit Decreasing (MBFD). For
the migration problem, three policies are proposed to choose
VMs to migrate in order to reduce energy consumption.

Cardosa et al. [9] have presented a novel approach for
power-efficient VM placement for the heterogeneous data
centers by leveraging min-max and share features of the VMs
based on the DVFS and soft scaling technique. The power
consumption and utilization obtained from the running time
of a VM are optimized by being set a priori. However, their
approach does not strictly support SLAs and the information
of applications’ priorities is needed. Cao and Dong [10] pro-
pose an energy-aware heuristic framework forVMconsolida-
tion which can obtain a better tradeoff between energy saving
and performance. A SLA violation decision algorithm is pro-
posed to determine hosts’ status for SLA violation. Based on
the hosts’ status, the minimum power and maximum utiliza-
tion policy for VM migration are used to achieve the energy
saving.

Reference [11] maximizes the utilization at virtual
machine level in the environment of container. The objective
of the paper is to dynamically set the sizes of virtual machines
in order to improve the utilization of VMs, which saves over-
all energy consumption. Experiments show that theirmethod
can achieve 7.55% of energy consumption compared to
scenarios where the virtual machine sizes are fixed. Reference
[12] proposes a VM allocation algorithm to reduce energy
consumption and SLA violation, which uses the historical
record of VMs’ usage.

Some other works mainly focus on the DVFS strategy
to decrease processors’ power consumption in hosts. Some
of them periodically adjust the frequency according to the
performance of server. Reference [13]monitors the utilization
of processors periodically and the frequency is decreased very
carefully when there are observable impacts on execution
time of tasks. Hsu and Feng [14] proposed a 𝛽-adaption algo-
rithm that periodically evaluates the performance and auto-
matically adapts the frequency and voltage at run-time. Ref-
erence [15] also developed the periodic DVFS controller for
multicore processor without using any performance model.

www.manaraa.com

Scientific Programming 3

However, the length of period has a great impact on the per-
formance of algorithms, it should be evaluated very carefully.

Scaling the frequency according to the types of workloads
is another efficient way to carry out DVFS control. They
achieve the goal of energy saving with a little or limited per-
formance loss by decreasing the frequency during the com-
munication, data access, memory access, or idle phases. Lim
et al. [16] proposed a run-time scheduler that applies DVFS
control during the communication phases which is identified
by intercepting the MPI calls. In [17], the authors presented a
novel algorithm that utilizes the opportunities in execution of
hybrid MPI/OpenMP application to scale the frequency and
reduce energy consumption. Tan et al. implement the DVFS
scheduling strategy for data intensive application in [18] and
achieved the energy saving. Their strategy adaptively sets
the suitable frequency according to the percentage of CPU-
bound time in the total execution time of workloads and is
implemented in source code level.

The DVFS is able to reduce the energy consumption,
but it is limited on a single server. A lot of work developed
the DVFS-based task scheduling among servers because
the distribution of workloads influences the overall energy.
References [19, 20] propose similar energy-aware strategies
that schedule a set of tasks onto physicalmachine.They adjust
supply voltage by utilizing slack time of noncritical jobs. Ref-
erence [19] also discussed the tradeoff between energy con-
sumption and scheduling length. Khan andAhmad [21] stud-
ied the problem of task allocation in grid and they utilized the
cooperative game theory to minimize the energy consump-
tion and makespan of tasks for DVFS-based clusters. Similar
to [21], Mezmaz et al. studied the problem for the dependent
precedence-constrained parallel applications [22]. Different
to these works, we study the independent real-time services
with deadline constraints in multiprocessor system.

References [23–27] researched energy-efficient task
scheduling for real-time system. Luo and Jha studied the
scheduling of periodic tasks in heterogeneous system and
gave a power-efficient solution [27]. In [24], authors proposed
an energy-aware task partitioning algorithmwith polynomial
time complexity for DVFS-based heterogeneous system.
Awan and Petters proposed an energy-aware partitioning of
tasks method which consists of two phases and they use a
realistic power model to estimate power consumption [23].
Our task allocating algorithm cooperates with the local DVFS
controller to predict the energy consumption in different
situations; the influence of frequency scaling to energy
consumption is taken into account before allocation for
saving more energy.

3. Overview

Our framework can accept and analyze the arrival workloads
and package them by Virtual Machines (VMs) and allocate
them to the suitable server to reduce energy consumption.We
first describe the architecture of our solution in Figure 1 and
subsequently introduce the real-time analysis in this section
[3]. In our solution, the Global Scheduler assigns a task to a
VM to execute it and guarantees its QoS requirement. This
VM will be allocated to a host which can offload it without

Task
(si, di, ei, ui)

Dispatcher

Se
rv

er

Se
rv

er

Local
manager

Local
manager

Cluster

· · ·

Task
analyzer

Task info. Task

Host
monitor

Candidates Global
scheduler

Local
monitor

Local DVFS
controller

(1) (1)

(2)

(3)
(4)

(5)

Global
tier

Local
tier

Figure 1: System architecture of our solution to the energy-aware
resource management.

causing any violation of QoS requirement and brings mini-
mum energy consumption. Our objective is to find the allo-
cation method for VMs and frequencies scaling method for
tasks to reduce the energy consumption.

Definition 1 (host model). Let host
𝑗
= (𝑈
𝑗
, 𝐹
𝑗
) be denoted as

resources of jth host, where 𝑈
𝑗
and 𝐹

𝑗
are vectors that record

the utilizations and frequencies of each processor.

The Task Analyzer in Dispatcher receives and analyzes
the information of incoming task and sends it to other
components when necessary.TheHostMonitor is an assistant
component which connects to each server and gathers the
basic information of servers. The Local Monitormonitors the
resources of a server and sends the basic information toHost
Monitor when necessary. The basic information of servers is
recorded in theHostModel (Definition 1).Wemainly focus on
the resource of processor, so we only record the states of pro-
cessors in the Host Model. The main work mechanism of our
solution to schedule a new task request task

𝑛
is described as

follows:

(1) When task
𝑛
comes, the Task Analyzer analyzes the

basic information of task
𝑛
and sends it to the Host

Monitor and Global Scheduler (Section 6).
(2) When the Host Monitor receives the information of

task
𝑛
, it selects a set of candidates who can load task

𝑛

according to the basic information of servers and
sends the set to the Global Scheduler. In the large
datacenter, the number of candidates can be carefully
selected to improve the effectiveness of allocation.

(3) When the Global Scheduler receives the candidates
and the basic information of task

𝑛
, it sends the task

information to the servers who are in the candidate
set.

(4) When a candidate receives the task information, the
local DVFS controller (Section 5) will run to estimate
the minimum energy change if task

𝑛
is allocated to

www.manaraa.com

4 Scientific Programming

one of its VM according to the monitored informa-
tion. Then the controller returns the result to the
Global Scheduler.

(5) When the Global Scheduler receives responses from
all the candidates, it allocates task

𝑛
to the best server

using our allocation algorithm. There may be some
network error in communications like packet error or
loss or high network delay.We can set some threshold
for the Global Scheduler, for example, time threshold
for response time or retry times. When response
time or retry times of a candidate are larger than
the thresholds, the Global Scheduler can discard this
candidate.

This is the simple architecture for energy-aware task
scheduling and some project implemented details or opti-
mizations are not discussed in this paper.Wemainly focus on
the energy-aware scheduling for tasks and provide a solution
to this problem. Some problems like single point of failure
andnetwork error are also important for the distributed cloud
system. We consider that these problems have the maturing
solutions in today’s cloud system and these aspects may not
be a problem to our solution.

4. Task Model

The request of service in the cloud computing system usually
has deadline constraints which is the major aspect of Service
Level Agreements (SLAs). We explore energy saving method
for the cluster that accepts request for tasks.Wedefine the task
model (Definition 2) to describe the request for a task. The
task model records some important information that users
provide. 𝑠

𝑖
and 𝑑

𝑖
describe the requirements of tasks and 𝑒

𝑖

and 𝑢
𝑖
describe the execution characters of tasks.

Definition 2 (task model). Let task
𝑖
= (𝑠
𝑖
, 𝑑
𝑖
, 𝑒
𝑖
, 𝑢
𝑖
) describe

ith task, where 𝑠
𝑖
, 𝑑
𝑖
, 𝑒
𝑖
, 𝑢
𝑖
represent the start time, relative

deadline, predicted execution time, and the average utiliza-
tion, respectively.

For the isolation, scalability, and stability of system, tasks
are usually run in the VMs independently in the cloud
computing system. We can regard each task as a VM, so the
allocation of the tasks is equivalent to the allocation of VMs
in some degree. In our model, we assign a task to a VM to
run and the VM will be allocated to appropriate host. When
a task finishes, the VM loading this task will be shut off or
turned into sleep. The living time for a VM to run a task is
equal to the execution time of this task. Therefore, the living
time for the VM should not exceed the deadline of the tasks.
Let VM

𝑖
represent the virtual machine load task

𝑖
.

We designed the Task Analyzer to accept and analyze
the incoming request of tasks. It sends the basic informa-
tion of tasks to other components after preprocessing. The
living time of a task (i.e., VM) usually includes computing
time and CPU idle time. The CPU idle time may consist
of communication, memory, or disk access. The real-time
analysis we designed is to distinguish the computing time and
CPU idle time. The average utilization of a VM can reflect

the computation andCPU idle time in some degree. Let𝑇
𝑐
(𝑓)

and 𝑇
𝑖
represent computing time at frequency 𝑓 and idle

time of a VM, respectively. We estimate the computing time
𝑇
𝑐
(𝑓max) = 𝑒𝑖 ⋅ 𝑢𝑖 and idle time 𝑇

𝑖
= 𝑒
𝑖
⋅ (1 − 𝑢

𝑖
) for ith task.

The Task Analyzer calculates 𝑇
𝑐
(𝑓max) and 𝑇𝑖 and sends these

information to other modules.
The computing time has a tight relation to the CPU

frequency which shows a linear extension to the reduction
in frequency [28, 29], while the idle time of a task will barely
change due to frequency scaling.Therefore, the living time of
the VM of ith task frequency 𝑓 can be expressed as

𝑇
𝑖
(𝑓) = 𝑇

𝑐
(𝑓max)

𝑓max
𝑓
+ 𝑇
𝑖
. (1)

When the local DVFS controller predicts the energy consump-
tion in different frequency, the living time of VMs can be
calculated by (1) according to the task information provided
by Task Analyzer. Although the running time can be pre-
dicted under different frequency, the energy prediction and
DVFS controller are not a easy task. We will introduce details
of our method to solve them in next sections.

5. Local DVFS Controller

The DVFS Controller plays an important role in our frame-
work and it has two main functions. On the one hand, it
predicts the energy consumption of a multiprocessor server
according to the processors’ utilizations, frequencies, and the
living time of VMs. On the other hand, based on the energy
prediction, it runs the k-Phase energy Prediction (kPP) algo-
rithm to find the best frequencies combinations that bring
minimum energy consumption.

5.1. Energy Prediction for Multiprocessor Servers. The electric
energy consumption is the integral of the active power with
respect to time. Therefore, the power prediction of server is
crucial. Previous works like [30–34] provided serval methods
to estimate the power of a server. However, they only focused
on the frequency-power or utilization-power relationship
and the detailed power prediction for multiprocessor plat-
form is also ignored. In this paper, we provide a practical
power prediction for multiprocessor servers based on the
frequency-power and utilization-power relationship. We uti-
lize the fact that the homogenous processors will consume the
same power when they are under the same condition to
predict the power consumption.

The power consumption of a server consists of two parts:
static and dynamic power consumption. The static parts
include the power consumption ofmain board, hard disk, fan,
and so forth. CPU accounts for the largest part of dynamic
power. According to the previous studies, the dynamic power
consumption of CPU is proportional to the frequency and to
the square of voltage [34], which can be express as

𝑃dynamic ≃ 𝐴 × 𝐶 × 𝑉
2
× 𝑓, (2)

where 𝐴 is the percentage of active gates, 𝐶 is total capaci-
tance, 𝑉 is supply voltage, and 𝑓 is the operating frequency.
According to [31], the voltage has a linear relationship to

www.manaraa.com

Scientific Programming 5

1.6 1.73 1.86 2 2.13 2.26 2.39

80

90

100

110

120

130

140

150

160

Frequency steps (GHz)

Po
w

er
 (W

at
t)

100%
83.3%
66.7%
50%

33.3%
16.7%
Idle

(a) Only one processor is busy

100%
83.3%
66.7%
50%

33.3%
16.7%
Idle

1.6 1.73 1.86 2 2.13 2.26 2.39

80

100

120

140

160

180

200

Frequency steps (GHz)

Po
w

er
 (W

at
t)

(b) Two processors are busy

Figure 2: Real power consumption of Dell R710 whose configurations are introduced in Table 1 and the legend represents the different
utilizations.

frequency, so the dynamic power of a processor can be
reduced as a function of frequency:𝑃dynamic = 𝛼×𝑓

3, where𝛼
is a proportional coefficient. Processors also have static power
when they are active. Let 𝑃

𝑠
represent the static power of a

server and 𝑃CPU
𝑠

represent the static power of processor. The
power of a host in which all homogenous processors work in
the same frequency𝑓with full utilization can be expressed as
follows:

𝑃 (𝑓) = 𝑃
𝑠
+ 𝑁
𝑐
(𝑃CPU

𝑠

+ 𝛼𝑓
3
) , (3)

where 𝑁
𝑐
is the number of CPUs. We want to eliminate the

static power of processors, which is not easy tomeasure. For a
given host, we can easily measure its maximum power which
is 𝑃max = 𝑃𝑠 + 𝑁𝑐(𝑃CPU

𝑠

+ 𝛼𝑓
3

max). Therefore, we can estimate
the power consumption of a host inwhich all processors work
in the same frequency 𝑓:

𝑃 (𝑓) = 𝑃max − 𝛼𝑁𝑐 (𝑓
3

max − 𝑓
3
) . (4)

The power consumption is also related to utilizations.
Figure 2(a) shows the power consumption with only one
processor running and Figure 2(b) shows the power of two
processors that work in same utilization and frequency. As
we can see, the power with different utilization under same
frequency is different. The power and the utilization present
a linear relationship which is with one voice to [30, 32, 33].

Therefore, the power consumption of one homogenous CPU
with frequency 𝑓 and utilization 𝑢 can be denoted as

𝑃CPU (𝑢, 𝑓) =
1

𝑁
𝑐

[𝑃max − 𝑃𝑠 − 𝛼𝑁𝑐 (𝑓
3

max − 𝑓
3
)] 𝑢. (5)

Finally, the power of prediction of a homogenous multipro-
cessor server can be expressed as

𝑃host = 𝑃𝑠 +

𝑁
𝑐

∑

𝑐=1

𝑃
𝑐

CPU

= 𝑃
𝑠

+
1

𝑁
𝑐

𝑁
𝑐

∑

𝑐=1

[𝑃max − 𝑃𝑠 − 𝛼𝑁𝑐 (𝑓
3

max − 𝐹
3

𝑗,𝑐
)]𝑈
𝑗,𝑐
.

(6)

We can view the power of jth host as a function of utilizations
and frequencies, which is presented as 𝑃host(𝐹𝑗, 𝑈𝑗), where𝑈𝑗
and 𝐹

𝑗
are defined in Host Model.

Definition 3 (Frequency Scaling Unit). A time interval [𝑡
1
, 𝑡
2
)

is a Frequency Scaling Unit (FSU) if (1) ∀𝑡 ∈ [𝑡
1
, 𝑡
2
),𝑁𝑇(𝑡) =

𝑁𝑇(𝑡
1
) and (2) 𝑁𝑇(⋅) changes at 𝑡

1
and 𝑡

2
, where 𝑁𝑇(𝑡)

represents the number of VMs at time 𝑡 in a server.

The energy consumption depends on both the execution
time and the power. We define the concept of Frequency
Scaling Unit (FSU, Definition 3) to estimate the living time

www.manaraa.com

6 Scientific Programming

CPU1

CPU2

VM1

VM2

VM3

VM4

Host

TimeFSU 1 FSU 2 FSU 3 FSU 4

t1 t2 t3 t4 t5

Figure 3: An example of FSU.

of VMs.The FSU represents a period of time that the number
of VMs does not change. Once the number of VMs changes,
that is, a VM coming or leaving, it enters the next FSU. An
example of FSU is shown in Figure 3, which includes four
FSUs. Assuming a VM is stopped at time 𝑡

2
and next VM is

ended at time 𝑡
3
, then𝑇 = 𝑡

3
−𝑡
2
is an FSU. If aVM is allocated

to the server at 𝑡
1
and the VM finished at 𝑡

2
, 𝑇 = 𝑡

2
− 𝑡
1
is

said to the first FSU from current time. It is obvious that the
number of VMs in the host is equal to the number of FSUs if
all VMs finish at the different time, and we suppose that VMs
are ended at the different time in a host in the rest of this
paper.

If we set consistent frequencies for all processors in an
FSU, the power state in this FSU is relatively stable because the
workloads in this FSU are fixed. We know the length of this
FSU, so the energy consumption in an FSU can be predicted
conveniently and precisely by the following equation: 𝐸 =
𝑃×𝑇, where 𝑃 and 𝑇 represent power and time, respectively.
Based on the definition of FSU, power function, and related
notations in Notations, the energy consumption of jth host to
finish all the VMs can be predicted as follows:

𝐸
𝑗
=

𝑁
𝑗,𝑝

∑

𝑘=1

𝑃
𝑗,𝑘
(𝑈
𝑗,𝑘
, 𝐹
𝑗,𝑘
) 𝑇
𝑗,𝑘
, (7)

where the power of host 𝑃
𝑗,𝑘

can be calculated by (6) in
different situations. The length of FSU can also be estimated
under different frequencies by (1).

5.2. kPP Algorithm for Energy Minimization. According to
the analysis of energy prediction, if we set consistent frequen-
cies in an FSU, then we can predict the energy consumption
in an FSU conveniently. If we set FSUs with different frequen-
cies, the living time of VMs and power state of server will be
different, which brings different energy consumption. There
is an optimal solution that consumes minimum energy when
all VMs end in this server. We want to find the frequencies
combinations for all FSUs that bring minimum energy on
the promise of ensuring the requirements of VMs. Based on
the energy prediction, the energy minimization problem of

frequency scaling in homogenous multiprocessor platforms
can be formalized as follows:

min
𝐹
𝑗,𝑘
∈𝐹
𝑗

𝑁
𝑗,𝑝

∑

𝑘=1

𝑃
𝑗,𝑘
(𝑈
𝑗,𝑘
, 𝐹
𝑗,𝑘
) 𝑇
𝑗,𝑘

s.t. ∀𝑗 ∈ 𝐻, VM
𝑖
∈ 𝐽
𝑗
, 𝑠
𝑖
+

𝑁
𝑖

𝑝

∑

𝑚=1

𝑡
𝑖

𝑗,𝑚
< 𝑑
𝑖
.

(8)

For clearly describing the problem, we define (𝐹
𝑗,1
, 𝐹
𝑗,2
,

. . . , 𝐹
𝑗,|𝐽
𝑗
|
) as a state of possible frequencies combinations for

FSU 1 to |𝐽
𝑗
| using the notations in Notations. If there is only

one frequencies combination that is different between two
states, we say they are neighbors. For example, if there are two
states 𝑠

1
: (𝐹
𝑗,1
, 𝐹
𝑗,2
, . . . , 𝐹

𝑗,|𝐽
𝑗
|
) and 𝑠

2
: (𝐹
𝑗,1
, 𝐹
𝑗,2
, . . . , 𝐹

󸀠

𝑗,|𝐽
𝑗
|
)

and the frequencies combinations of FSU |𝐽
𝑗
| in 𝑠
1
and 𝑠

2

are different while others are the same, then 𝑠
1
and 𝑠
2
are

neighbors. In addition, we define 𝐸(𝑠) as the cost function
of total energy consumption of 𝑠 according to (7) if we scale
the frequencies like 𝑠 in each FSU. Let a node present a state
and an edge (𝑢, V) between two nodes presents neighborhood
between 𝑢 and V. The minimization problem is to find the
“optimal” node that brings minimum energy without any
violation of SLAs from the initial node in the graph.

Lemma 4. Let the initial node represent the state in which all
processors’ frequencies are highest in all FSUs. If the initial state
ensures SLAs for all VMs, there is a path from initial node to
the optimal node with minimum energy consumption without
any violation of SLAs.

Proof. Let 𝑠
𝑚
= (𝐹
𝑗,1
, 𝐹
𝑗,2
, . . . , 𝐹

𝑗,|𝐽
𝑗
|
) represent the optimal

state with minimum energy consumption without any vio-
lation of SLAs. If all processors’ frequencies are highest in all
FSU of 𝑠

𝑚
, the initial state is the optimal state. Otherwise, we

select the FSU 𝑟 in which the frequencies are not highest for
all CPUs. If we scale the frequencies to highest in 𝑟, the new
state 𝑠

𝑛
will also ensure the SLAs for all VMs because proces-

sors are working at higher frequencies which leads to shorter
execution time. 𝑠

𝑛
is one of the neighbors of the optimal

state, which means that 𝑠
𝑛
can also move to 𝑠

𝑚
. Repeating the

process above, we can find a path from 𝑠
𝑚
to initial state 𝑠

𝑖
,

which represents that there is a path from 𝑠
𝑖
to 𝑠
𝑚
.

5.2.1. 𝑘-Phase Energy Prediction (kPP) Algorithm. By energy
prediction of k FSUs, the best frequencies combinations can
be foundmoving from the initial state according to Lemma 4.
There are |𝐹

𝑗
| possible frequencies combinations in each FSU,

so there may be |𝐹
𝑗
|
|𝐽
𝑗
| possible states of all FSUwith different

energy consumption. Let 𝐹𝐿
𝑗
represent the frequency levels

of jth host; we have |𝐹
𝑗
| = |𝐹𝐿

𝑗
|
|𝐶
𝑗
|. We want to find the opti-

mal solution with minimum energy consumption in these
|𝐹
𝑗
|
|𝐽
𝑗
| possible states while still ensuring SLAs. However,

the searching space may be |𝐹𝐿
𝑗
|
|𝐶
𝑗
||𝐽
𝑗
| which is too huge if

there are many VMs. Therefore, we provide two heuristic
algorithms to search the “optimal” solutions which are based
on simulated annealing (SA) [35] and variable depth search
(VDS) [36], respectively.

www.manaraa.com

Scientific Programming 7

Input:
The state of host

𝑗
;

Output:
The possible state 𝑠;

(1) 𝐽
𝑗
= host

𝑗
.getVM(), 𝐹

𝑗
= host

𝑗
.getFreqSpace()

(2) set 𝑠
0
be the state that the frequency is max for each CPU in all FSU

(3) 𝑠 = 𝑠
0
, 𝑒 = 𝑒max = 𝐸(𝑠0), 𝑡 = 0, 𝑘 = |𝐽𝑗|

(4) while 𝑡 < 𝑡max or 𝑠 doesn’t change in 𝑙 rounds do
(5) 𝑠𝑡 = 𝑠, 𝑟 = random(𝑘)
(6) 𝐹

𝑗,𝑟
= random(𝐹

𝑗
− 𝑠.get(𝑟)) /∗Select a neighbor∗/

(7) 𝑠𝑡.set(𝑟, 𝐹
𝑗,𝑟
) /∗Change frequencies combination of FSU 𝑟 to 𝐹

𝑗,𝑟

∗/
(8) for 𝑖 = 1 to 𝑘 do
(9) if VM

𝑖
violates SLAs according to 𝑠𝑡 then

(10) go to (17)
(11) end if
(12) end for
(13) 𝑒𝑡 = 𝐸(𝑠𝑡)

(14) if 𝑒𝑡 ≤ 𝑒max or random() < exp(−(𝑒𝑡 − 𝑒)𝑡/𝑝𝑇) then
(15) 𝑠 = 𝑠𝑡, 𝑒 = 𝑒𝑡 /∗Change states∗/
(16) end if
(17) 𝑡 = 𝑡 + 1

(18) end while
(19) return 𝑠

Algorithm 1: SA based kPP algorithm.

(1) Simulated Annealing Based Heuristic Algorithm. By com-
paring energy consumption of a random neighbor, we can
find a better state that brings less energy. If we repeat the
process many times, we may find the optimal state. Let 𝑠

0

represent the initial state in Lemma 4. In fact, since the simu-
lated annealing (SA) algorithm has been proved to converge
to the optimum with probability 1, it can be expected that
our algorithm will output nice results by enough iterations.
If we know the frequency steps and tasks’ information, the
living time of VMs is determined.Therefore, we can estimate
the total energy of the situation of state 𝑠

0
(line 3) using the

energy cost function 𝐸(⋅). The algorithm runs 𝑡max iterations
to find the state where less energy is consumed compared
to the initial state. In each iteration, the algorithm randomly
selects an FSU 𝑟 to change the frequencies of processors and
generates a new state 𝑠𝑡. This step takes 𝑂(1) time. If the
random neighbor 𝑠𝑡 violates SLAs for any one of VMs, the
state is discarded and our algorithm enters into the next
iteration. This step takes 𝑂(𝑁

𝑗,𝑝
) time, where 𝑁

𝑗,𝑝
is the

number of tasks. Otherwise, if predicted energy 𝑒𝑡 is less than
𝑒, 𝑠𝑡 is selected as compared state for next iteration due to less
energy consumption.The energy prediction takes𝑂(𝑁

𝑗,𝑝
⋅𝑁
𝑐
)

time according to (7), where𝑁
𝑐
is the number of processors.

Besides, the algorithm also changes the state from 𝑠 to 𝑠𝑡with
the probability exp(−(𝑒𝑡 − 𝑒)/𝑝𝑇) suggested by Metropolis
et al. [37] to give the possible to find optimal solution. The
details of the simulated annealing based kPP algorithm are
presented in Algorithm 1. Obviously, the time complexity of
SA-based kPP algorithm is 𝑂(𝑁

𝑗,𝑝
⋅ 𝑁
𝑐
⋅ 𝑡max).

(2) Variable Depth Search Based Heuristic Algorithm. The
VDS-based kPP algorithm selects the state that brings

minimum energy in a subset of neighbors and compares
it to the current state. If the selected state consumes less
energy on the promise of ensuring the SLAs of VMs, we
will change the state to it. The initialized state of VDS-
based algorithm is the same as the initialization of SA-based
algorithm.The algorithm selects a subset of neighbors whose
frequencies combination of FSU 𝑟 are different (lines 5-6).
The frequencies combination of FSU 𝑟withminimum energy
will be selected (line 7) and generates a new state. The energy
prediction takes 𝑂(𝑁

𝑗,𝑝
⋅ 𝑁
𝑐
) time, so the selection of state

with minimum energy takes 𝑂(|𝑋| ⋅ 𝑁
𝑗,𝑝
⋅ 𝑁
𝑐
) time, where

|𝑋| is the size of subset. The algorithm checks the violations
of SLAs of new state (lines 9–13). The process repeats for
𝑡max times or until the state 𝑠 does not change in 𝑙 iterations.
Therefore, the time complexity of this algorithm is 𝑂(|𝑋| ⋅
𝑁
𝑗,𝑝
⋅ 𝑁
𝑐
⋅ 𝑡max). The effectiveness of the variable depth search

is proved in [36].The details of VDS-based kPP algorithm are
shown in Algorithm 2.

The local DVFS controller runs the kPP algorithm when
the Global Scheduler asks it to predict the minimum energy
consumption and return it to Global Scheduler. This is one of
the opportunities to run kPP algorithm. When the workload
changes, the power state will change. In addition, the execu-
tion time of VMs may have some errors which may lead to
the error of energy prediction. Therefore, we apply the fre-
quencies scaling when a VM finishes and scale the frequency
for first FSU, which means that the algorithm only scales the
CPUs’ frequencies just for the first FSU while predicting the
frequencies combinations for k FSUs. As the example shown
in Figure 3, if the VM

4
comes at the time 𝑡

1
and is allocated

to the host, this host applies the kPP algorithm at that time
and sets the CPUs’ frequencies like FSU 1 of the result. When

www.manaraa.com

8 Scientific Programming

Input:
The state of host

𝑗
;

Output:
The possible state 𝑠;

(1) 𝐽
𝑗
= host

𝑗
.getVM(), 𝐹

𝑗
= host

𝑗
.getFreqSpace()

(2) set 𝑠
0
be the state that the frequency is max for each CPU in all FSU

(3) 𝑠 = 𝑠
0
, 𝑡 = 0, 𝑘 = |𝐽

𝑗
|

(4) while 𝑡 < 𝑡max or 𝑠 doesn’t change in 𝑙 rounds do
(5) 𝑠𝑡 = 𝑠, 𝑟 = random(𝑘)
(6) randomly select a subset𝑋 ⊆ 𝐹

𝑗

(7) 𝑥 = argmin(𝐸(𝑠𝑡.set(𝑟, 𝑥))), for all 𝑥 ∈ 𝑋 /∗Select the state form subset with minimum energy consumption∗/
(8) 𝑠𝑡.set(𝑟, 𝑥) /∗Change frequencies combination of FSU 𝑟 to 𝑥∗/
(9) for 𝑖 = 1 to 𝑘 do
(10) if VM

𝑖
violates SLAs according to 𝑠𝑡 then

(11) go to (15)
(12) end if
(13) end for
(14) 𝑠 = 𝑠𝑡 /∗Change states∗/
(15) 𝑡 = 𝑡 + 1

(16) end while
(17) return 𝑠

Algorithm 2: VDS-based kPP algorithm.

VM
1
finishes at the 𝑡

2
, the kPP algorithm also runs to obtain

the “optimal” state 𝑠 and scales frequencies according to the
result. Due to the specialities of kPP algorithm at running
time, the iteration should be completed in a short time so that
the local stage can scale the frequencies in time.

6. Global Scheduler

Different allocations of a new VM may affect the overall
energy consumption, because the new VM executed on
different servers will bring different energy consumption.
We want to find the appropriate scheduling to minimize the
energy consumption to finish all the VMs. We can obtain the
different energy consumption with different allocation if we
ask each host to predict the minimum energy consumption.
Using the results of different allocations, we can select a better
allocating scheme to reduce the energy consumption. Our
goal is tominimize the overall energy cost of thewhole cluster
for finishing all VMs including the new VM VM

𝑛
. To solve

the energy minimization problem of VM scheduling, we first
formalize the problem. Let decision parameter 𝑎𝑖

𝑗,𝑐
be 1 if the

ith VM is allocated to cth CPU of jth host, otherwise 0. The
energy-efficient VM allocation problem can be expressed as

min ∑

𝑗∈𝐻

{

{

{

min
𝐹
𝑗,𝑘
∈𝐹
𝑗

𝑁
𝑗,𝑝

∑

𝑘=1

𝑃
𝑗,𝑘
(𝑈
𝑗,𝑘
, 𝐹
𝑗,𝑘
) 𝑇
𝑗,𝑘

}

}

}

s.t. ∑

𝑗∈𝐻,𝑐∈𝐶
𝑗

𝑎
𝑛

𝑗,𝑐
≤ 1;

𝐽
𝑗
= 𝐽
𝑗
∪ {VM

𝑛
} , if 𝑎𝑛

𝑗,𝑐
= 1;

∀𝑗 ∈ 𝐻, VM
𝑖
∈ 𝐽
𝑗
, 𝑠
𝑖
+

𝑁
𝑖

𝑝

∑

𝑚=1

𝑡
𝑖

𝑗,𝑚
< 𝑑
𝑖
;

∀𝑘 ∈ 𝑁
𝑗,𝑝
, 𝑗 ∈ 𝐻, ∑

𝑐∈𝐶
𝑗

𝑈
𝑐

𝑗,𝑘
< 𝑈𝑇
𝑗
.

(9)

The energyminimization problem of VM scheduling is to
find the server which brings minimum energy of whole clus-
ter if VM

𝑛
is allocated to it. The minimum energy consump-

tion of each server can be predicted by kPP algorithm, repre-
sented by EMIN

𝑗
for jth host. If an incoming VM is allocated

to jth host, the value of EMIN
𝑗
changes while the minimum

energy consumption of other hosts does not change. When
VM
𝑛
is allocated to the yth host, the energy consumption

becomes EMIN󸀠
𝑦
+ ∑
𝑗∈𝐻−{𝑦}

EMIN
𝑗
, where EMIN󸀠

𝑦
is the

minimumenergy cost if VM
𝑛
is allocated to yth host.We have

𝐸min = EMIN󸀠
𝑦
+ ∑

𝑗∈𝐻−{𝑦}

EMIN
𝑗

= ΔEMIN
𝑦
+ EMIN

𝑦
+ ∑

𝑗∈𝐻−{𝑦}

EMIN
𝑗

= ΔEMIN
𝑦
+ ∑

𝑗∈𝐻

EMIN
𝑗
.

(10)

So we can select the host that brings minimum energy
change ΔEMIN

𝑦
to run the incoming VM. We call the

scheduling algorithmMinimum energy Change (MC), shown
inAlgorithm3.TheGlobal Scheduler sends the information of
a VM after analyzing to a subset of host (line 1) and each host
returns the predicted minimum energy change on it. There-
fore, we can run the energy-efficient algorithm in parallel to

www.manaraa.com

Scientific Programming 9

Input:
A new VM VM

𝑛
;

Output:
Designate host and processor for loading VM

𝑛
;

(1) Host Monitor selects a subset of active hosts that can load the VM
(2) notify the information of VM

𝑛
to all candidates

(3) each host estimates the minimum energy change ΔEMIN
𝑗
if VM is allocated to processor 𝑐 of host

𝑗

(4) host
𝑗
= argmin

𝑗∈𝐻
(ΔEMIN

𝑗
)

(5) return host
𝑗

Algorithm 3: Minimum energy change allocation.

obtain theminimumenergy consumption for each host when
a VM arrives. After the local DVFS controller predicts the
minimum energy change, it also records the best processor to
hold this VM. When this VM is really allocated to it, the VM
will be scheduled onto this best processor. Once deciding the
host, the selected host will start a VM to run the VMworking
under the selected frequencies. It is obvious that the time
complexity is𝑂(|𝐻|+𝐿+𝑇), where 𝐿 and𝑇 represent the time
complexity of local predicting algorithm and communication
time, respectively.

The number of candidate hosts will affect the total cost
of a cluster, we evaluate the influence of kPP strategy on the
total energy cost. Assume the total VM number is𝑁

𝑡
; the size

of subset for candidate hosts is𝑁
ℎ
and the average run-time

of local DVFS algorithm is 0.5 seconds. Let the mean power
consumed by a VM be 𝑃Watt and the average length of VMs
be 𝑡 seconds.ThekPP algorithm runswhen theMCalgorithm
asks candidate hosts to estimate energy consumption; the
energy consumption of kPP algorithm in this part is𝑁

ℎ
⋅ 𝑃 ⋅

𝑁
𝑡
⋅ 0.5.The kPP algorithm also runs when a VM is allocated

and finished, so the energy for this part is 2 ⋅ 𝑁
𝑡
⋅ 𝑃 ⋅ 0.5,

and the total energy produced by all VMs is𝑁
𝑡
⋅ 𝑃 ⋅ 𝑡. There-

fore, the energy consumption ratio (ECR) of kPP algorithm
compared to the total energy cost is

ECR =
0.5 ⋅ 𝑁

ℎ
+ 1

𝑡
. (11)

In a large scale data center, the mean VM length can be
acquired according to the historical data, andwe can carefully
select the size of candidate host estimating the energy change
of offloading a new VM to increase the energy consumption
of kPP algorithm as less as possible.

7. Experimental Evaluation

7.1. Evaluating Power Prediction. The energy prediction of
server depends on the accuracy of power prediction under
different utilizations and frequencies. We have evaluated the
multiprocessor power prediction method by comparing the
real power consumption to the estimation of power model
in different status for a specific host. The real experimental
environment is shown in Figure 4. The details of server R710
used in our paper are shown in Table 1. We explore the real
power consumption R710 and use the first seven steps when

Table 1: Details of servers.

Name Dell PowerEdge R710 Dell PowerEdge R720

CPUs
Two Intel Xeon
processors

E5645 @2.4GHz

Two Intel Xeon
processors

E5-2620 @2.1 GHz

Frequency
steps (GHz)

1.60, 1.73, 1.86, 2.00,
2.13, 2.26, 2.39, 2.40

1.20, 1.30, 1.40, 1.50,
1.60, 1.70, 1.80, 1.90,

2.00, 2.10
Memory 24G 1333Mhz DDR3 64G ECC DDR3
Disk Two 10 k SAS, 250GB One 10 k SAS, 300GB
Operation
system CentOS 6.5 CentOS 6.5

Dispatcher

Power recorder

USB

Power sourcePower analyzer3 R720 servers

Figure 4: Real system architecture.

we evaluate the power model because the last frequency is
very close to the frequency 2.39GHz. The power consump-
tion of the host when both processors are fully utilized at fre-
quency level 2.39GHz is 192 Watt and the static power when
the system is not idle is 110Watt.The proportional coefficient
𝛼 = 2.33135 is obtained and calibrated by offline experi-
ments.

For evaluating the multiprocessor power prediction, we
randomly select some frequencies and utilizations of two
processors and use power model to estimate the power
consumption. At the same time, we measure the real power
consumption of R710 server with the same frequencies and
utilizations of processors and results are shown in Table 2.
We use theAitekAWE2101 power analyzer tomeasure power.
Table 2 shows that the estimated power is very close to the real

www.manaraa.com

10 Scientific Programming

Table 2: Power comparison.

Frequencies (GHz) Utilizations Power (Watt) Error
CPU
1

CPU
2

CPU
1

CPU
2

Estimation Real
1.60 2.00 61% 87% 145.33 147.01 −1.14%
1.73 2.13 95% 84% 156.45 157.81 −0.86%
1.86 1.73 19% 14% 117.50 117.03 +0.40%
2.00 1.60 59% 9% 127.96 128.32 −0.28%
2.13 2.13 61% 84% 155.67 155.68 +0.00%
2.13 1.86 58% 57% 141.94 142.68 −0.52%
2.26 2.00 58% 30% 139.10 137.89 +0.87%
2.26 2.39 98% 81% 178.21 181.69 +1.91%
2.39 1.60 92% 18% 150.87 149.79 +0.72%
2.39 2.13 12% 59% 133.48 133.15 +0.25%

Table 3: Run-time versus SA iterations.

SA iterations 2 CPUs with 12 VMs 4 CPUs with 24 VMs
RT (ms) EC (J) RT (ms) EC (J)

0 0 2466027 0 3210277
10 1 2397905 1 3195957
100 3 2385065 7 3117021
1000 20 2323755 50 3004518
10000 170 2301687 486 2952581
100000 1676 2293194 4895 2923625
1000000 16645 2289410 46070 2851156

power consumption of the server with the same utilizations
and frequencies of different processors.

7.2. Convergence Speed. In this subsection, we compare the
convergence speeds of the two algorithms and present them
in Tables 3 and 4.The reported run-times and iteration times
are for running the two algorithms of a synthetic 2-processor
and 4-processor with 7 frequency levels machine where 12
and 24VMs are executed in parallel.The RT and EC in Tables
3 and 4 represent running time and energy consumption,
respectively. We can draw three obvious conclusions: (1) the
SA-based algorithm iterates significantly faster than theVDS-
based algorithmwhichmeans thatmore iterations can be exe-
cuted during the same period; (2) the VDS-based algorithm
outperforms the SA-based algorithm while it leads to the
same iteration times if the host is equipped with serval pro-
cessors; (3) when the processor number and frequency levels
are relatively small, both the two algorithms converge rapidly
and obtain the close results. And the VDS-based algorithm
perform better than SA-based algorithmwhen the number of
processors is small. This conclusion suggests that the service
provider may prefer the SA-based algorithm if they persist in
finding the best frequency configurations.

Notice that, in this experiment, we use a very extreme set-
up where a 4-processor host is enforced to run as much as
24VMs at the same time, which means a processor must be
responsible for 6VMs on average. In fact, in the real data-
centers, it can be expected that the average VM number on

Table 4: Run-time versus VDS iterations.

VDS
iterations

2 CPUs with 12 VMs 4 CPUs with 24 VMs
RT (ms) EC (J) RT (ms) EC (J)

0 0 2466027 0 3210277
10 5 2379716 12 3080983
100 38 2302226 118 2926700
1000 361 2293796 1145 2859979
10000 3519 2289368 11682 2855693
100000 35245 2289438 115659 2843434
1000000 349465 2289410 1140554 2848026

a single processor is far less than 6. Thus our algorithm can
run efficiently enough to serve for our online VM scheduling
algorithm and obtain an accepted result within 1 second
which is close to results of more iterations.

7.3. Experiments in Real Environment. Our real experimental
environment has three servers and a controller on a virtual
machine. The power is measured by Aitek Power Analyzer
AWE2101. Each R720 server whose details are shown in
Table 1 runs the kPP algorithm to predict energy and control
processors’ speed. We combine the kPP algorithm with the
random (Ran) and first-fit (FF) VM scheduling. The random
scheme allocates the coming task to the processor randomly
from the subset of processors which can offload the new task
without causing any violations ofQoS requirements.Thefirst-
fit scheme gives each processor an index and allocates the
coming task to the processor with smallest index who can
offload the new task without causing any violations of QoS
requirements. Meanwhile, the proposed global assignment
(MC) is also combined with the default DVFS controller
Ondemand [38] (DEF) in Linux. The two-tier energy-aware
resource management proposed in this paper is represented
by MC-kPP. We compare these six strategies to evaluate the
performance of our solution on energy savings. For each VM,
its execution time is generated uniformly at random between
a minimum and maximum living time represented by 𝐸𝑇min
and 𝐸𝑇max, respectively. The deadline of a VM is set from 1
to 1.5 times longer to its execution time randomly. Moreover,

www.manaraa.com

Scientific Programming 11

3

3.5

4

4.5
En

er
gy

 co
ns

um
pt

io
n

(J
)

40
60

80

×10
6

M
C-

kP
P

M
C-

D
EF

FF
-k

PP

FF
-D

EF

Ra
n-

kP
P

Ra
n-

D
EF

(a) 𝐸𝑇min = 600, 𝐸𝑇max = 3600

60

4.5

5

5.5

6

6.5

7

7.5

En
er

gy
 co

ns
um

pt
io

n
(J

)

40

×10
6

M
C-

kP
P

M
C-

D
EF

FF
-k

PP

FF
-D

EF

Ra
n-

kP
P

Ra
n-

D
EF

(b) 𝐸𝑇min = 600, 𝐸𝑇max = 7200

Figure 5: Energy consumption of real system. The legend in (a) and (b) means that the number of VMs needs to be allocated.

their utilizations requirements follow the normal distribution
with 𝜇 = 0.75 and 𝜎 = 1. In addition, the arriving times
of VMs follow a Poisson distribution with different average
rates.

In these experiments, the iteration times are 10000 for SA-
based kPP and 1000 for VDS-based kPP and the number of
neighbors in VDS-based kPP algorithm is 20. The results of
SA-based and VDS-based algorithms are very close, so we
show the results of VDS-based kPP algorithm in Figure 5
whose legend represents different numbers of VMs. Mean-
while, the size of candidates in MC algorithm is equal to the
number of servers. As we can see in Figure 5, the energy
savings of our solution can reach from 8% to 17% in the real
environment with 3 servers.

7.4. Simulation Results. Due to the inaccessibility of a large
scale datacenter, we conduct the simulations to evaluate MC-
kPP solution in a larger cluster. We model Dell R710 servers
to service the dynamically arriving VMs. Meanwhile, the
attributes of generated VMs are the same as the attributes
introduced in Section 7.3.

As we can see in Figure 6(a), the local kPP algorithm
can reduce energy consumption of a specific server compared
to Ondemand strategy. In addition, the influences of global
scheduling algorithm are greater than the influences of local
DVFS controller on energy savings when different scheduling
algorithms are applied.The lengths of VMs in Figure 6(b) are
generated uniformly and randomly between 600 and 7200
seconds. The legend in Figure 6(b) represents the arriving

ratio of VMs in one minute. The results show an increasing
tendency of the energy saving ratio with the increments of
VM numbers and the best result can reach about 28%. In
Figure 6(c), we investigate the influence of lengths of VMs;
VMs are generated in different lengthswhich are shown in the
legend. As shown in Figure 6(c), MC-kPP can also save more
energy when the VMs become more. At the same time, MC-
kPP performs better when the average execution time of VMs
becomes longer, because the influence of local kPP algorithm
itself becomes smaller and the effectiveness of frequencies
scaling becomes more obvious. In addition, the size of subset
in MC algorithm is also investigated in Figure 6(d); the
energy consumption of kPP algorithm in local machine is
below 0.5% of total energy consumption when the average
execution time is long. With the increment of subset size, the
performance of MC-kPP is improved because a better server
can be found in a larger scale. We also evaluate the effective-
ness of MC-kPP in different scales of data centers ranging
from 50 to 5000 servers with different features of arriving
VMs. According to the results of Figure 7, the MC-kPP
outperforms other strategies in different scales of datacenters,
which can reach about 25%energy savings.With the increase-
ment of host numbers and VM numbers, MC-kPP performs
stably in different scenarios.

8. Conclusions

In this paper, we propose a cooperative two-tier energy-
efficient strategy to manage the VM allocations and adapt

www.manaraa.com

12 Scientific Programming

0

5

10

15

20

25
En

er
gy

 sa
vi

ng
 (%

)

50–1000
100–2000
500–60000

1000–100000
5000–1000000

MC-kPP MC-DEF FF-kPP FF-DEF Ran-kPP

(a) Energy saving

400 600 800 1000
10

15

20

25

30

Sa
vi

ng
 ra

tio
 (%

)
Total VM number

4
6

8
10

(b) Arriving ratios

400 600 800 1000
10

15

20

25

30

Sa
vi

ng
 ra

tio
 (%

)

Total VM number

[300, 1800]
[600, 7200]
[1800, 14400]

(c) VM lengths

30
0

0.5

1

1.5

2

En
er

gy
 co

st
ra

tio
 (%

)

Subset size

10

15

20

25

En
er

gy
 sa

vi
ng

 ra
tio

 (%
)

0

5

30

10 20 40 50

[300, 1800]
[300, 1800]
[600, 7200]

[600, 7200]
[1800, 14400]
[1800, 14400]

(d) Influence of subset size

Figure 6: Performance evaluation on different aspects. The legend in (a) represents the “server numbers-total VM number.” The legend in
(b) represents the “VM request number arriving in a minute.” The legend in (c) and (d) represents the “(minimum living time, maximum
living time).”

frequencies scaling for saving energy. A frequency scaling
algorithm is proposed based on the practical power and
energy prediction. The Global Scheduler collaborates with
local DVFS controller to assign VMs and save overall energy.

In addition, two heuristic algorithms are provided for search-
ing the optimal solutions which predict minimum energy
consumption. The time complexities of both the algorithms
are acceptable with satisfactory results according to the

www.manaraa.com

Scientific Programming 13

400 600 800 1000
0

2

4

6

8

10

12
En

er
gy

 co
ns

um
pt

io
n

(J
)

Total VM number

MC-kPP
MC-DEF
FF-kPP

FF-DEF
Ran-kPP
Ran-DEF

×10
7

(a) 50 hosts

Total VM number

MC-kPP
MC-DEF
FF-kPP

FF-DEF
Ran-kPP
Ran-DEF

20000 40000 60000 80000 100000
0

2

4

6

8

10

12

En
er

gy
 co

ns
um

pt
io

n
(J

)

×10
9

(b) 1000 hosts

MC-kPP
MC-DEF
FF-kPP

FF-DEF
Ran-kPP
Ran-DEF

100000 200000 300000 400000 500000
0

5

10

15

En
er

gy
 co

ns
um

pt
io

n
(J

)

Total VM number

×10
10

(c) 3000 hosts

MC-kPP
MC-DEF
FF-kPP

FF-DEF
Ran-kPP
Ran-DEF

200000 400000 600000 800000 1000000
0

1

2

3

4

5

En
er

gy
 co

ns
um

pt
io

n
(J

)

Total VM number

×10
11

(d) 5000 hosts

Figure 7: Energy consumption of different scale of datacenters with different number of VMs.

experiments. Finally, the real experiment results justify the
effectiveness of MC-kPP.

Notations

𝐽
𝑗
: The set of jobs (VMs) in jth host
𝐶
𝑗
: CPU set of jth host

𝐹
𝑗
: All possible combinations of frequencies for CPUs on

jth host
𝐹
𝑗,𝑘
: Combinations of frequencies for CPUs on jth host in
kth

𝑈
𝑗,𝑘
: Utilizations of CPUs of jth host in kth FSU

𝑈
𝑐

𝑗,𝑘
: Utilization of cth CPU of jth host in kth FSU

𝑇
𝑗,𝑘
: Time length of kth FSU of jth host

www.manaraa.com

14 Scientific Programming

𝑁
𝑗,𝑝
: The number of FSUs from the current time of jth

host
𝑃
𝑗,𝑘
(⋅): The power function of jth host in kth FSU.

Disclosure

This is a substantially extended version of the paper presented
at ICA3PP 2015 [3].

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work is partially supported by the National Natural
Science Foundation of China under Grants nos. 61472181,
61100197, and 61202113; JiangsuCollegeNatural Science Foun-
dation under Grant no. 14KJB520016; JiangsuNatural Science
Foundation under Grant no. BK20151392; and JSPS KAK-
ENHIGrant no. 16K00117. And this work is also partially sup-
ported by Collaborative Innovation Center of Novel Software
Technology and Industrialization.

References

[1] W. Forrest, “How to cut data centre carbon emissions?” 2008.
[2] A. Beloglazov, R. Buyya, Y. C. Lee et al., “A taxonomy and survey

of energy-efficient data centers and cloud computing systems,”
Advances in Computers, vol. 82, no. 2, pp. 47–111, 2011.

[3] W. Huang, J. Shi, Z. Wang, and Z. Qian, “BiTEM: a two-tier
energy efficient resource management framework for real-time
tasks in clusters,” in Algorithms and Architectures for Parallel
Processing, G. Wang, A. Zomaya, G. M. Perez, and K. Li, Eds.,
vol. 9529 of Lecture Notes in Computer Science, pp. 494–508,
Springer, Berlin, Germany, 2015.

[4] A. Verma, P. Ahuja, and A. Neogi, “pMapper: power andmigra-
tion cost aware application placement in virtualized systems,”
in Proceedings of the 9th ACM/IFIP/USENIX International Con-
ference on Middleware (Middleware ’08), pp. 243–264, Springer,
Leuven, Belgium, December 2008.

[5] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and
X. Zhu, “No power struggles: coordinated multi-level power
management for the data center,” ACM SIGARCH Computer
Architecture News, vol. 36, pp. 48–59, 2008.

[6] B. Guenter, N. Jain, and C. Williams, “Managing cost, perfor-
mance, and reliability tradeoffs for energy-aware server provi-
sioning,” in Proceedings of the 30th IEEE International Confer-
ence on Computer Communications (INFOCOM ’11), pp. 1332–
1340, Shanghai, China, April 2011.

[7] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and
G. Jiang, “Power and performance management of virtualized
computing environments via lookahead control,” Cluster Com-
puting, vol. 12, no. 1, pp. 1–15, 2009.

[8] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-efficient man-
agement of data center resources for cloud computing: a vision,
architectural elements, and open challenges,” https://arxiv.org/
abs/1006.0308.

[9] M. Cardosa, M. R. Korupolu, and A. Singh, “Shares and utilities
based power consolidation in virtualized server environments,”

in Proceedings of the IFIP/IEEE International Symposium on
Integrated Network Management (IM ’09), pp. 327–334, June
2009.

[10] Z. Cao and S. Dong, “An energy-aware heuristic framework
for virtual machine consolidation in Cloud computing,” The
Journal of Supercomputing, vol. 69, no. 1, pp. 429–451, 2014.

[11] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya,
“Efficient virtual machine sizing for hosting containers as a
service (SERVICES 2015),” in Proceedings of the IEEE World
Congress on Services (SERVICES ’15), pp. 31–38, New York, NY,
USA, June-July 2015.

[12] Z. Zhou, Z. Hu, and K. Li, “Virtual machine placement algo-
rithm for both energy-awareness and sla violation reduction in
cloud data centers,” Scientific Programming, vol. 2016, Article ID
5612039, 11 pages, 2016.

[13] G. Semeraro, D. H. Albonesi, S. G. Dropsho, G. Magklis, S.
Dwarkadas, and M. L. Scott, “Dynamic frequency and voltage
control for a multiple clock domain microarchitecture,” in Pro-
ceedings of the 35th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’02), pp. 356–367, IEEE, Novem-
ber 2002.

[14] C.-H.Hsu andW.-C. Feng, “A power-aware run-time system for
high-performance computing,” in Proceedings of the ACM/IEEE
Supercomputing Conference (SC ’05), IEEE Computer Society,
Seattle, Wash, USA, November 2005.

[15] J. P. Halimi, B. Pradelle, A. Guermouche et al., “Reactive DVFS
control for multicore processors,” in Proceedings of the IEEE
Green Computing and Communications (GreenCom ’13), pp.
102–109, August 2013.

[16] M. Lim, V. W. Freeh, and D. K. Lowenthal, “Adaptive, trans-
parent frequency and voltage scaling of communication phases
in mpi programs,” in Proceedings of the ACM/IEEE Conference
on Supercomputing (SC ’06), p. 14, Tampa, Fla, USA, November
2006.

[17] D. Li, B. R. de Supinski,M. Schulz, D. S.Nikolopoulos, andK.W.
Cameron, “Strategies for energy-efficient resourcemanagement
of hybrid programming models,” IEEE Transactions on Parallel
and Distributed Systems, vol. 24, no. 1, pp. 144–157, 2013.

[18] L. Tan, Z. Chen, Z. Zong, D. Li, and R. Ge, “A2E: adaptively
aggressive energy efficient DVFS scheduling for data intensive
applications,” in Proceedings of the IEEE 32nd International Per-
formance Computing and Communications Conference (IPCCC
’13), pp. 1–10, IEEE, San Diego, Calif, USA, December 2013.

[19] L. Wang, G. Von Laszewski, J. Dayal, and F. Wang, “Towards
energy aware scheduling for precedence constrained parallel
tasks in a cluster with DVFS,” in Proceedings of the 10th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid ’10), pp. 368–377, IEEE, Melbourne,
Australia, May 2010.

[20] H. Kimura, M. Sato, Y. Hotta, T. Boku, and D. Takahashi,
“Emprical study on reducing energy of parallel programs using
slack reclamation by DVFS in a power-scalable high perfor-
mance cluster,” in Proceedings of the IEEE International Con-
ference on Cluster Computing (Cluster ’06), pp. 1–10, September
2006.

[21] S. U. Khan and I. Ahmad, “A cooperative game theoretical
technique for joint optimization of energy consumption and
response time in computational grids,” IEEE Transactions on
Parallel and Distributed Systems, vol. 20, no. 3, pp. 346–360,
2009.

[22] M. Mezmaz, N. Melab, Y. Kessaci et al., “A parallel bi-objective
hybrid metaheuristic for energy-aware scheduling for cloud

www.manaraa.com

Scientific Programming 15

computing systems,” Journal of Parallel and Distributed Com-
puting, vol. 71, no. 11, pp. 1497–1508, 2011.

[23] M. A. Awan and S. M. Petters, “Energy-aware partitioning of
tasks onto a heterogeneous multi-core platform,” in Proceedings
of the IEEE 19th Real-Time and Embedded Technology and
Applications Symposium (RTAS ’13), pp. 205–214, Philadelphia,
Pa, USA, April 2013.

[24] J.-J. Chen, A. Schranzhofer, and L. Thiele, “Energy minimiza-
tion for periodic real-time tasks on heterogeneous processing
units,” in Proceedings of the 23rd IEEE International Parallel and
Distributed Processing Symposium (IPDPS ’09), pp. 1–12, IEEE,
Rome, Italy, May 2009.

[25] H.-R. Hsu, J.-J. Chen, and T.-W. Kuo, “Multiprocessor synthesis
for periodic hard real-time tasks under a given energy con-
straint,” in Proceedings of the Conference on Design, Automation
and Test in Europe (DATE ’06), pp. 1061–1066, European Design
and Automation Association, Munich, Germany, March 2006.

[26] W.Y. Lee, “Energy-savingDVFS scheduling ofmultiple periodic
real-time tasks on multi-core processors,” in Proceedings of the
13th IEEE/ACMSymposium onDistributed Simulation and Real-
Time Applications (DS-RT ’09), pp. 216–223, IEEE Computer
Society, October 2009.

[27] J. Luo and N. K. Jha, “Power-efficient scheduling for het-
erogeneous distributed real-time embedded systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, no. 6, pp. 1161–1170, 2007.

[28] M. Etinski, J. Corbalan, J. Labarta, and M. Valero, “Under-
standing the future of energy-performance trade-off via DVFS
in HPC environments,” Journal of Parallel and Distributed
Computing, vol. 72, no. 4, pp. 579–590, 2012.

[29] L. Tan, Z. Chen, Z. Zong, R. Ge, and D. Li, “A2E: adaptively
aggressive energy efficient DVFS scheduling for data intensive
applications,” in Proceedings of the IEEE 32nd International Per-
formance Computing and Communications Conference (IPCCC
’13), pp. 1–10, San Diego, Calif, USA, December 2013.

[30] M. A. Blackburn, FiveWays to Reduce Data Center Server Power
Consumption, Green Grid, 2008.

[31] E. N. (Mootaz) Elnozahy,M. Kistler, and R. Rajamony, “Energy-
efficient server clusters,” in Power-Aware Computer Systems, B.
Falsafi and T. N. Vijaykumar, Eds., vol. 2325 of Lecture Notes in
Computer Science, pp. 179–197, Springer, Berlin, Germany, 2003.

[32] X. Fan,W.-D.Weber, and L. A. Barroso, “Power provisioning for
a warehouse-sized computer,” in Proceedings of the 34th Annual
International Symposium on Computer Architecture (ISCA ’07),
pp. 13–23, ACM, June 2007.

[33] A. Gandhi,M.Harchol-Balter, R. Das, and C. Lefurgy, “Optimal
power allocation in server farms,” inProceedings of theACM11th
International Joint Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS ’09), vol. 37, pp. 157–168,
Seattle, Wash, USA, June 2009.

[34] T. Mudge, “Power: a first-class architectural design constraint,”
Computer, vol. 34, no. 4, pp. 52–58, 2001.

[35] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680,
1983.

[36] J. Hromkovič, Algorithmics for Hard Problems: Introduction to
Combinatorial Optimization, Randomization, Approximation,
and Heuristics, Springer Science & Business Media, 2013.

[37] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, “Equation of state calculations by fast com-
putingmachines,”The Journal of Chemical Physics, vol. 21, no. 6,
pp. 1087–1092, 1953.

[38] V. Pallipadi and A. Starikovskiy, “The ondemand governor,” in
Proceedings of the Linux Symposium, vol. 2, pp. 215–230, Ottawa,
Canada, 2006.

www.manaraa.com

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

www.manaraa.com

Copyright of Scientific Programming is the property of Hindawi Publishing Corporation and
its content may not be copied or emailed to multiple sites or posted to a listserv without the
copyright holder's express written permission. However, users may print, download, or email
articles for individual use.

